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Wigner-Eckart theorem and infinitesimal operators of 
group representations 

A U Klimyk 
Institute for Theoretical Physics, Kiev 130, USSR 

Received 13 April 1983 

Abstract. The new notion of a tensor operator which transforms under a representation 
of the compact Lie group is introduced. This tensor operator is a linear space "L" of 
operators. In order to obtain the traditional tensor operator it is sufficient to choose a 
basis in the space 7'". The Wigner-Eckart theorem is valid for our tensor operators. The 
notion of irreducibility and the equivalence relation for tensor operators are formulated. 
Necessary and sufficient conditions of irreducibility and of equivalence are proved. Using 
the Wigner-Eckart theorem, we give the method of evaluation of infinitesimal operators 
of the representations of compact and non-compact Lie groups. The new invariants of 
irreducible representations of compact groups are found. Their quantity is equal to that 
of independent Casimir operators. 

1. Introduction 

Tensor operators and the Wigner-Eckart theorem are very significant mathematical 
tools of theoretical physics. Therefore, any results relating to tensor operators are of 
great importance for applications. 

Usually, by the term 'tensor operator' we mean the set of operators T = 
{T", n = 1 ,2 ,  , . .} which transforms under some representation g +Dk of a symmetry 
group G. This definition implies correspondence between the operators T,, and the 
orthonormal basis elements /An) of the carrier space V of g+Di.  We show in this 
paper that the concept of a tensor operator has a wider definition. We put forward 
the new notion of a tensor operator which does not depend on the choice of a basis 
in V. We understand that a tensor operator is the linear space Y of operators, which 
act in  a fixed Hilbert space H. Every operator T E Y corresponds to a fixed element 
of V. The Wigner-Eckart theorem is valid for this tensor operator. Every orthonormal 
basis in V gives (according to the correspondence between V and Y )  a set of operators 
T,,, n = 1, 2 , .  . . , which is a traditional tensor operator. Reduced matrix elements for 
the 'linear space' tensor operator are those for every tensor operator {T", n = 1,2,  . . .}. 

We give the definitions of irreducibility and equivalence of tensor operators, and 
prove necessary and sufficient conditions for tensor operators to be equivalent or 
irreducible. These conditions may be useful for applications of the Wigner-Eckart 
theorem (invariant wave equations, construction of representations of Lie super- 
algebras and so on). 

The Wigner-Eckart theorem is a good tool for investigation of infinitesimal 
operators of group representations. Application of group representations in physics 
(elementary particle theory, nuclear and atomic physics) demands infinitesimal 
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operators in different orthonormal bases (which correspond to different subgroup 
chains relating to physical problems). Using the Wigner-Eckart theorem we give 
formulae for infinitesimal operators of group representations, which allow us to 
evaluate their matrix elements in different bases. They express these matrix elements 
by means of some Clebsch-Gordan coefficients. In this way we obtain r new invariants 
of group representations, where r is the rank of the group. It is interesting to investigate 
these invariants. They may be of some importance for physics. 

Let us note that some of our results were known for partial Lie groups. However, 
we give a new treatment of the results. 

2. Tensor operator as a linear space 

The definition of a tensor operator includes two representations of the symmetry 
group G. One of these representations realises the symmetry of the tensor operator. 
This representation and tensor operator act in the same Hilbert space H. The second 
representation of G acts upon the index of the tensor operator. Let us consider these 
representations. 

Let g+Tg be a unitary representation of the compact group G in the Hilbert 
space H. In general, this representation is reducible. Therefore, H decomposes into 
an orthogonal sum of invariant irreducible subspaces 

H = C@m,Hj. 
i 

Here m,H, = HI OH, 0. . .OH,  im, times). The irreducible representation of G in HI 
will be denoted by g + Ti .  In order to distinguish between subspaces H, with the 
same j we use an additional index s :  Hf, s = 1, 2, . . . , m,. 

Let g+D: be an irreducible unitary representation of G in the space V. An 
orthonormal basis of V will be denoted by ] A n ) ,  n = 1, 2 , .  . . , dim D*. Then 

D,".(g)=(hnlD,'lhn') ( 2 )  

are matrix elements of g + D ,'. 
Usually the tensor operator T ' = { T t ,  n = 1, 2 , .  . . , dimD4}, acting in the space 

H and transforming under the representation g+D;  of G, is defined as a set of 
operators T t ,  for which 

The representation g + T, of G realises the symmetry of the tensor operator T". The 
linear span H '  of the subspaces Hy has to be included in the domains of the operators 
T t .  Relation (3) has to be fulfilled in H ' .  

The components Tt of T A  are associated with the basis elements ] A n )  of the 
carrier space V of g +D.i. Formula (3) shows that under the action T: + T,T;T,', 
the tensor operator T" transforms in exactly the same way as the basis elements IAn) 
do. Thus, the usual definition of a tensor operator is connected with a fixed basis of 
V. 

Let us take another orthonormal basis of V: 
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The numbers unm constitute a unitary matrix. We can obtain the operators 

F.: =c unmTt.  ( 5 )  

T ~ T ~ T ; ’  = 1 u n m ~ g ~ ; ~ ; l .  (6 )  

n 

Therefore, 

n 

Matrix elements DL.,(g) for the basis /Am)’ are connected with matrix elements (2) 
by 

Dk,m(g)= 1, UnmU,’m’Dt’n(g)* 
nn 

Therefore, 

= 1 unmDf,,,(g)T;,. 
nn’  

Due to (3) the right-hand sides of (6) and (7) are equal. Hence 

(7) 

T ~ F ~ T ; ’  =Cok, , (g)Fk . .  (8) 

Thus, a set of operators (5) is a tensor operator PA transforming under the representa- 
tion g + D, of G. 

Let us show that the tensor operators TA and P“ have the same reduced matrix 
elements. Let ljsi), i = 1, 2, , . . , dim Hi, be an orthonormal basis of HT. Then due 
to the Wigner-Eckart theorem (Barut and Raczka 1977, Butler 1975) matrix elements 
of the operators T t  can be represented as 

m ’  

( jsi 1 T, 1 j ‘ s  ’i ’) = ( j s  )IT A 11 j ‘ s  ‘)r ( j i  1 An, j ’ i (9)  

where (. . . 1 . . . , . . .)’ are Clebsch-Gordan coefficients of G. Here r separates multiple 
irreducible representations g + Tg in the tensor product of the representations g + D i  
and g + Ti .  We have 

r 

(jsilp; lj‘s’i’) = 1 unm(jsilT2 lj’s‘i’) 
n 

= 1 (j~I\T-’/lj’s’)~ 1 unm(jilAn, j’i’)r 

= 1 ( j s  1) T .‘I1 j ’ s  ’ ) r  ( ji 1 Am, j ’ i  ‘) 

r n 

r 

where the last Clebsch-Gordan coefficient corresponds to the basis IAm)’. Therefore, 
TA and PA have the same reduced matrix elements. 

From the point of view of the usual definition of a tensor operator, TA and f” 
are different tensor operators. However, it is more natural to consider them as the 
same tensor operator, corresponding to different bases of the space V. Moreover, 
continuing this analogy we can consider the correspondence between vectors 
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and operators 

T t  = anTt .  
n 

A set of operators T'u\ constitutes a linear space (we denote it by V ) .  The correspon- 
dence U + T: realises the isomorphism 4 between V and V. The mapping T t  + 
T,T,\T,' is a linear transformation 9,' of Zr, The correspondence g +a,' is a 
representation of G in 2'. The isomorphism 4 realises equivalence of the representa- 
t i o n s g + D t  andg+9a,kaa=qhD;4- ' .  

Now we can give the following definition of a tensor operator. The linear space 
2' of operators (acting in the Hilbert space H )  for which the mapping T ' +  T,T"T,', 
T A  E Zr, is the representation g + 9: of G in 2' is called a tensor operator transforming 
under the representation g + 9; of G. It follows from formulae (9)-(11) that 

where the reduced matrix elements (jsllT'I/j's')' coincide with those of relation (9).  
Formula (12) is the Wigner-Eckart theorem for a tensor operator of new definition 
('linear space' tensor operator). 

It is clear that a 'linear space' tensor operator does not depend on a choice of 
basis Ihn) of the space. Choosing the basis lhn)  in V and taking the operators 
T t  =q5 Inn) E V we obtain the tensor operator in the usual sense. 

We can further generalise the definition of a tensor operator. Let 2' be a linear 
space of operators acting in the Hilbert space H,  and g + Tg be a unitary representation 
of the group G, acting in H. Then 2' is called a tensor operator if for every T E Zr 
we have TgTTgl E Zr. 

The condition TglT, '  E V, T E V, means that the mapping T + T,TI",', T E 2', is 
a representation of G in 2'. Our tensor operator transforms under this representation. 

It is clear that the condition Tg77-' E V, T E Zr, is very simple. Here we do not 
need to know the matrix elements DAnt(g) of the representatation of G. Moreover, 
our last definition gives a simple method of construction of tensor operators. Indeed, 
if we have the representation g+T,  of G in the Hilbert space H and the operator 
A in H, then taking the linear span -Zr of the operators T,AT,', g E G, we obtain a 
tensor operator: TgCVTgl E V. 

29 

3. Wigner-Eckart theorem for different bases 

The Wigner-Eckart theorem is proved for fixed bases Ijsi)  of the subspaces Hf of H. 
Reduced matrix elements in  (9) are defined by 

where d is the dimensionality of g + Tl,. Reduced matrix elements do not depend on 
i, i', and n,  but their definition by formula (13) depends on the choice of bases ljsi) 
of Hf. Let us show that in reality reduced matrix elements do not depend on this 
choice. In other words, if l ist) '  are new bases of spaces Hs then 

(14) (jstIT2 l j ' s ' r ' )  = 1 ( ~ s ~ ~ T ' ~ ~ j ' s ' ) ' ( ~ r ~ A n ,  j ' r ' ) r  
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where the reduced matrix elements coincide with those of formula (9). Let 

l j s t ) ’  = 1 a:,l jsi). (15) 
I 

The numbers a:, (at fixed j )  constitute a unitary matrix. It follows from (9) and (15) 
that 

(jstIT2 lj’s’t’) = 1 &z:’[ (jsilTnlj’s’i’) 
,,’ 

= 1 (js~~T“l1j’~’)~ 1 & z { : f t ( j i l A n , j f i ’ ) f  

= 1 ( j s ~ ~ T “ ~ ~ j ’ s ’ ) ‘ ( ~ t ~ A n , j ’ t ’ ) ‘ .  

I ii’ 

f 

Therefore, the reduced matrix elements in (9) and (14) coincide. It is clear that this 
assertion is valid if we take the operators T t ,  U E V, instead of the operators T;,  
n = 1,  2, . . . , dim D“. 

4. Irreducibility and equivalence of tensor operators 

Usually irreducibility of the tensor operator T*={T;, n = 1, 2 , .  . .} is defined as 
irreducibility of the representation g+Dt of G. However, it is possible to give 
another definition of irreducibility, which is useful for applications. 

The tensor operator T;Z = {TI\, v E V} is called irreducible, if a set of operators T,, 
g E G, and T:, U E V, is irreducible, i.e. if every bounded operator A,  commuting 
with all operators T, and TI\, is a multiple of the unit operator. 

The tensor operators TI‘ = {T:, U E V }  and f* = {Ft, v E V} transforming under 
the same representation g + Di of G are called equivalent (or unitary equivalent) if 
there exists an invertible bounded (respectively unitary) operator U, transforming H 
into 6, for which 

UT&-‘ = fR, g E G, UT:U-’ = ?:, U E V. (16) 

Here g + T, and g + rig are representations of G which realise the symmetry of T“ 
and f“, correspondingly. Let us note that here we do not suppose that the representa- 
tions g + Tg and g + F, are unitary. 

We shall give necessary and sufficient conditions of irreducibility and equivalence 
of tensor operators. For their formulation we need some facts on the space H. This 
space is represented by formula (1). Let us represent the subspace m,Hi in the form 
m,Hi = Vj@Hi. In order to define the space Vj we consider the basis ljsi), i = 1,2 ,  , , . , 
dim Hi, s = 1,2 ,  . . . , mi, of m,Hi. We express these basis elements as I js)Olji) = ljs)lji), 
where l i s )  are formal vectors, which define the orthonormal basis of the space V,. 
The correspondence 

I / s i )  I is ) I ii) (17) 
realises an isomorphism of m,Hj and V j / i H i .  In the following we identify these two 
spaces. It is clear that the operators Tg, g E G, acting on ljs)lji), leave the vector l is)  
invariant. The space H can be represented as 
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This formula and identification (17) allow us to introduce new operators which act 
on the spaces Vj  and Hi. Namely, for each j l ,  j 2  and r we introduce the operator 
A(j2j lr)  which transforms Vjz into Vjl: 

Thus, reduced matrix elements of the tensor operator T A  are matrix elements of 
A ( j 2 j l r ) .  For each j l ,  j 2  and r we also introduce the operator W v ( j z j l r )  which 
transforms Hi, into Hi,: 

Theorem. Let tensor operators T A  = {T:, U E V} and f" = {f:', U E V} transform 
under the same representation g -0: of G and act in the Hilbert spaces H and g, 
correspondingly. Let the representations g + T, and g + Fg realise the symmetry of 
these tensor operators. Then T A  and PA are equivalent if and only if (a) the 
representations g + T, and g + fg are equivalent; (b) there exists a uniformly bounded 
(in j )  set of invertible operators Uj, associated with the summands in (19) and 
transforming VI onto c,, such that for every r 

UllA(j2j1r)Ui1 =A(j2jlr);  (23) 

(c) the operator U, which realises equivalence of the representations g + Tg and g + F,, 
has the form 

U =CO(VjOEj),  
i 

where Ej is the unit operator in Hj =Hj. 
T A  and f A  the representations g + T, 
the operators Uj have to be unitary. 

For unitary equivalence of the tensor operators 
and g + F, have to be unitary equivalent, and 

Let us note that the formulation of the theorem assumes that the space 6 is 
represented as 

ci =ComJi i  = c o ( Q j i i o H j ) .  (25) 

Uniform boundedness (in j )  of the operators U, means that supj llUjll < a < CO, where 
a is a constant. 

i i 
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We shall prove the theorem for the case of equivalent tensor operators. The proof 
for unitary equivalence is the same. Let the tensor operators T A  and f'' be equivalent. 
Then there is an invertible bounded operator U for which the relations (16) are valid. 
From the first relation of (16) it follows that the representations g + T, and g + Fg 
are equivalent. Then from the Schur lemma it follows that U = I;,OUi, where {U:}  
is a set of invertible uniformly bounded (in j )  operators, transforming the space 
m,H, c H onto the space m,H, c I?. Since the operators T, and FR act upon basis 
elements of the spaces m,H, = V, OH, and m,H, = p, OH, by the same formulae, then 
due to the Schur lemma we have U:  = U, BE,, where U, is an operator from to c. Therefore, the relation (24) is proved. Since IlU: 11 = IlV,ll then a set of the operators 
U, is uniformly bounded i n j .  It is clear that the operators U, are invertible. Substituting 
the expressions (22) for the operators T:' and Ft and the expression (24) for the 
operator U into the second relation of (16) we obtain relation (23). Thus, necessity 
is proved. Sufficiency is proved in the same way by reversing the order of the reasoning. 
The theorem is proved. 

Theorem. The tensor operator T A  = { T t ,  v E V }  is irreducible if and only if for every 
uniformly bounded (in j )  set of operators C, acting in the spaces Vi, fulfilment of the 
relations 

implies the equalities C, = aE,, where E, is the unit operator in V, and a is a constant. 
C,,A ( j 2 i 1 r )  = A(jd'lr)C,2 (26) 

Proof of this theorem is similar to that of the previous theorem. Let T A =  
{ T t ,  v E V} be an irreducible tensor operator. Let Cj be operators acting in different 
spaces 5 and satisfying the conditions of our theorem. Then we construct the operator 
C = Xi 0 (Ci @Ei), acting in the space (18). lJsing the relations (22) and (26) it is easy 
to verify that C commutes with all operators T t ,  v E V, and Tg, g E G. Since the 
tensor operator T A  is irreducible then C = aE, where a is a constant and E is the 
unit operator in H. Therefore, Ci = aEi. Thus, necessity is proved. Sufficiency is 
proved in the same way by reversing the order of the reasoning. The theorem is thus 
proved. 

5. Wigner-Eckart theorem and infinitesimal operators for representations of 
compact groups in different bases 

Here the Wigner-Eckart theorem will be used in infinitesimal form. Instead of the 
representations g + D t  and g + TR of the group G we consider the representations 
a +D: and a + T, of the Lie algebra 9 of G. Formula (3)  in infinitesimal form can 
be written as 

Since [%, 91 = 9, then the representation of % in the space %(adjoint representation) 

(ada)x  = [ a , x ] ~ % ,  (28) 
corresponds to the element a of 9. It is known that a scalar product can be introduced 
in % by means of the Cartan-Killing bilinear form. Let us choose an orthonormal 

is defined. According to this representation the operator ad a, 
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basis b l ,  b z ,  . . . , b, in 3. Let Dtd(a)  be matrix elements of the adjoint representation 
of 9 with respect to this basis. These matrix elements coincide with the structure 
constants of 93. Relation (28) for basis elements x = bi can be written as 

(ad a)bi  = [a ,  b i ]  = 1 D:t(a)bi,.  (29) 

Now we consider the finite-dimensional irreducible representation a + T t  of Ce. 
According to (29) 

i' 

where T ?  = Tti .  Relation (27) shows that the operators T?, i = 1 , 2 , .  . . , II, constitute 
the tensor operator Tad, which transforms under the adjoint representation ad of '3. 
The representation a + T:  of Ce realises the symmetry of this tensor operator. Thus, 
the space H of relation (1) in this case consists of one subspace Hi. 

Let \Am), m = 1 , 2 , .  . . ,dim T A ,  be a basis of the carrier space H of a + T i ,  
According to the Wigner-Eckart theorem 

(Am(T? lAm') = 1 (A(JTad((A)'(AmI(ad)i, Am')'. 
4 

As was shown in § 2, the reduced matrix elements (A/1TadllA)' are not dependent on 
the choice of orthonormal basis \Am). 

The formula (31) contains Clebsch-Gordan coefficients for the tensor product of 
the representations ad and a -+ T:. Due to formula (11) of Klimyk (1968) this tensor 
product contains the representation a + T t  with multiplicity n,, 6 r,  where r is the 
rank of '3. Moreover, there is an infinite number of representations a + TA for which 
I I ~  = r. Therefore, we can formulate the following theorem. 

Theorem. Every irreducible representation a + T t  of '3 is characterised by r numbers 
(A IITadl(A )', q = 1,2 ,  , . . , r. Some of them may be equal to zero. Infinitesimal operators 
T ?  of the representation a + T:  in any orthonormal basis IAm) are given by formula 
(31 1. 

Thus, the numbers (A IITadllA)4 are invariants of the representation a -+ T t .  Their 
quantity is equal to that of independent Casimir operators. However, in  some cases 
the invariants (A l(Tadl(A)' are more useful than eigenvalues of Casimir operators for 
the representation a + Tt .  For example, the relations of Casimir operators with matrix 
elements of infinitesimal operators are very complicated. The invariants (A IITadllA )' 
are directly connected with these matrix elements. 

Now the meaning of the invariants (A l(Tad\(A)' in the representation theory is not 
clear. Properties of these invariants will be derived in a separate paper, where their 
explicit expressions will be given for the groups U(n) and SO(n) .  

6. Infinitesimal operators for representations of compact and non-compact Lie 
groups in different bases 

Now we consider infinitesimal operators from another point of view. Let G be a 
semisimple real non-compact Lie group and K its maximal compact subgroup. Let 
G be a complexification of G, and GI, its real compact form. Then GI, is of the same 
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dimensionality as G. Moreover, Gk 2 K .  Enumeration of the corresponding groups 
G and Gk can be found, for example, in Klimyk (1982) and Klimyk and Gruber 
(1979). Let ‘3 and %k be Lie algebras of G and Gkr respectively. Let X be a Lie 
algebra of K.  Then we have (Helgason 1962) - 

% = X + B ,  %k = X + i 9 ,  i = J-I ,  (32) 

where sums are direct and 9 is a linear subspace in %. These decompositions have 
the property (Helgason 1962) 

[%, 91 c 9, [X, i 9 ]  c i9. (33) 

Therefore, we have the representations of X in B and in i 9 .  Let p s ,  s = 1 , 2 , .  . . , k, 
and p i ,  s = 1 ,2 ,  . , . , k ,  be bases in 9 and i 9 ,  respectively. We denote the representa- 
tions of X in  9 and in i 9  by AD. (These representations are equivalent.) According 
to (33) we have 

[a, P S I  = c Dssp (a  Ips , ,  a EX,  (34) 

[a, p i  I = 1 D y (a )pl,, 

9 ’  

a E X. (35) 

Now we consider the representation a + T :  of the algebra %k. Operators which 
correspond to a EX, p s  and p i  will be denoted by A, P, and P:, respectively. It follows 
from (34) and (35) that 

S ’  

Therefore, P = {Ps,  s = 1, 2 ,  . . . , k} and P’ = {Pi, s = 1 ,  2, . . . , k} are tensor operators 
which transform under the representation AD of X. The reduction of the representa- 
tion a + T: onto X realises the symmetry of these tensor operators. Let H = CiOm,Hj 
be a decomposition of H into invariant irreducible (with respect to X) subspaces. 
Different subspaces Hi with the same j will be denoted by Hi”, s = 1, 2 , .  . . , mi. 
Orthonormal basis elements of Hi” will be denoted by l j s i ) .  According to the 
Wigner-Eckart theorem we have 

(jsilP: l j ’ s ‘ i ’ )  = 1 (js//P’l/j’s’)‘(jil(AD)s, j ’ i ’ ) 4 .  (39) 

We consider that the representation operators for the subalgebra X are known. 
Therefore, we have to find them for 9 and i 9  (cf formula (32)). In  other words, we 
have to find the operators P, and P:. They are defined by relations (38) and (39). To 
have them in an explicit form we have to find reduced matrix elements of (38) and 
(39). If infinitesimal operators P, and P: are known for one choice of basis l j s i )  then 
relations (38) and (39) define reduced matrix elements: 

4 

( j ~ ~ l P ~ l j ’ s ’ ) ~  = 1 (jsilPs 1 j’s’i’) ((AD)s, j’i’lji)q, 
S I ’  

( j ~ l l ~ ’ l l j ’ ~ ’ ) ~  = ( j s i l ~ : l j ’ s ‘ i ’ ) ( ( ~ ~ ) ~ ,  j’iflji)4. 
S I  ’ 
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These reduced matrix elements can be used for obtaining the infinitesimal operators 
P, and P: in any basis ljsi)’. They can be obtained by means of Clebsch-Gordan 
coefficients for the basis Ijsi)’. 

Thus, evaluation of an explicit form of infinitesimal operators P, and Ps’ in different 
bases is reduced to the evaluation of Clebsch-Gordan coefficients for different bases. 
There are many methods for the evaluation of Clebsch-Gordan coefficients. We 
mention here the recursive formula (47) of Klimyk (1982). The results of Klimyk 
(1979), Klimyk and Gruber (1979) and Gruber and Klimyk (1981) can be used for 
evaluation of partial Clebsch-Gordan coefficients. 

7. Conclusion 

We have generalised the notion of a tensor operator transforming under a representa- 
tion of a compact group. This tensor operator is a linear space clr of operators. The 
usual tensor operator can be obtained by any choice of a basis in  V, 

We apply the Wigner-Eckart theorem to evaluate matrix elements of infinitesimal 
operators. This evaluation demands Clebsch-Gordan coefficients of partial type. 
Therefore, the problem is to evaluate these Clebsch-Gordan coefficients in different 
bases. Considering infinitesimal operators of representations of compact and non- 
compact groups, we see (cf formulae (38) and (39)) that they are of the same form. 

We have obtained new invariants of irreducible representations of compact Lie 
groups. It is interesting to clarify their meaning in representation theory and for 
applications of group representations. Let us note that these invariants can be 
generalised to representations of non-compact semisimple Lie groups. The application 
of the Wigner-Eckart theorem for non-compact groups (Klimyk 1975) is needed. 
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