Wigner-Eckart theorem and infinitesimal operators of group representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 163693
(http://iopscience.iop.org/0305-4470/16/16/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:54

Please note that terms and conditions apply.

Wigner-Eckart theorem and infinitesimal operators of group representations

A U Klimyk
Institute for Theoretical Physics, Kiev 130, USSR

Received 13 April 1983

Abstract

The new notion of a tensor operator which transforms under a representation of the compact Lie group is introduced. This tensor operator is a linear space \mathscr{V} of operators. In order to obtain the traditional tensor operator it is sufficient to choose a basis in the space \mathscr{V}. The Wigner-Eckart theorem is valid for our tensor operators. The notion of irreducibility and the equivalence relation for tensor operators are formulated. Necessary and sufficient conditions of irreducibility and of equivalence are proved. Using the Wigner-Eckart theorem, we give the method of evaluation of infinitesimal operators of the representations of compact and non-compact Lie groups. The new invariants of irreducible representations of compact groups are found. Their quantity is equal to that of independent Casimir operators.

1. Introduction

Tensor operators and the Wigner-Eckart theorem are very significant mathematical tools of theoretical physics. Therefore, any results relating to tensor operators are of great importance for applications.

Usually, by the term 'tensor operator' we mean the set of operators $T=$ $\left\{T_{n}, n=1,2, \ldots\right\}$ which transforms under some representation $g \rightarrow D_{g}^{\lambda}$ of a symmetry group G. This definition implies correspondence between the operators T_{n} and the orthonormal basis elements $|\lambda n\rangle$ of the carrier space V of $g \rightarrow D_{g}^{\lambda}$. We show in this paper that the concept of a tensor operator has a wider definition. We put forward the new notion of a tensor operator which does not depend on the choice of a basis in V. We understand that a tensor operator is the linear space \mathscr{V} of operators, which act in a fixed Hilbert space H. Every operator $T \in \mathscr{V}$ corresponds to a fixed element of V. The Wigner-Eckart theorem is valid for this tensor operator. Every orthonormal basis in V gives (according to the correspondence between V and \mathscr{V}) a set of operators $T_{n}, n=1,2, \ldots$, which is a traditional tensor operator. Reduced matrix elements for the 'linear space' tensor operator are those for every tensor operator $\left\{T_{n}, n=1,2, \ldots\right\}$.

We give the definitions of irreducibility and equivalence of tensor operators, and prove necessary and sufficient conditions for tensor operators to be equivalent or irreducible. These conditions may be useful for applications of the Wigner-Eckart theorem (invariant wave equations, construction of representations of Lie superalgebras and so on).

The Wigner-Eckart theorem is a good tool for investigation of infinitesimal operators of group representations. Application of group representations in physics (elementary particle theory, nuclear and atomic physics) demands infinitesimal
operators in different orthonormal bases (which correspond to different subgroup chains relating to physical problems). Using the Wigner-Eckart theorem we give formulae for infinitesimal operators of group representations, which allow us to evaluate their matrix elements in different bases. They express these matrix elements by means of some Clebsch-Gordan coefficients. In this way we obtain r new invariants of group representations, where r is the rank of the group. It is interesting to investigate these invariants. They may be of some importance for physics.

Let us note that some of our results were known for partial Lie groups. However, we give a new treatment of the results.

2. Tensor operator as a linear space

The definition of a tensor operator includes two representations of the symmetry group G. One of these representations realises the symmetry of the tensor operator. This representation and tensor operator act in the same Hilbert space H. The second representation of G acts upon the index of the tensor operator. Let us consider these representations.

Let $g \rightarrow T_{g}$ be a unitary representation of the compact group G in the Hilbert space H. In general, this representation is reducible. Therefore, H decomposes into an orthogonal sum of invariant irreducible subspaces

$$
\begin{equation*}
H=\sum_{j} \oplus m_{i} H_{j} . \tag{1}
\end{equation*}
$$

Here $m_{j} H_{j}=H_{j} \oplus H_{j} \oplus \ldots \oplus H_{j}$ (m_{j} times). The irreducible representation of G in H_{j} will be denoted by $g \rightarrow T_{g}^{j}$. In order to distinguish between subspaces H_{j} with the same j we use an additional index $s: H_{j}^{s}, s=1,2, \ldots, m_{j}$.

Let $g \rightarrow D_{8}^{\wedge}$ be an irreducible unitary representation of G in the space V. An orthonormal basis of V will be denoted by $|\Lambda n\rangle, n=1,2, \ldots, \operatorname{dim} D^{\wedge}$. Then

$$
\begin{equation*}
D_{n^{\prime} n}^{\Lambda}(g)=\langle\Lambda n| D_{\mathrm{g}}^{\wedge}\left|\Lambda n^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

are matrix elements of $g \rightarrow D_{g}^{\prime}$.
Usually the tensor operator $\boldsymbol{T}^{\Lambda} \equiv\left\{T_{n}^{\Lambda}, n=1,2, \ldots, \operatorname{dim} D^{\Lambda}\right\}$, acting in the space H and transforming under the representation $g \rightarrow D_{g}^{\Lambda}$ of G, is defined as a set of operators T_{n}^{\wedge}, for which

$$
\begin{equation*}
T_{\mathrm{g}} T_{n}^{\Lambda} T_{g}^{-1}=\sum_{n^{\prime}} D_{n^{\prime} n}^{\Lambda}(g) T_{n^{\prime}}^{\Lambda} \tag{3}
\end{equation*}
$$

The representation $g \rightarrow T_{\mathrm{g}}$ of G realises the symmetry of the tensor operator T^{Λ}. The linear span H^{\prime} of the subspaces H_{j}^{s} has to be included in the domains of the operators T_{n}^{Λ}. Relation (3) has to be fulfilled in H^{\prime}.

The components T_{n}^{Λ} of \boldsymbol{T}^{\wedge} are associated with the basis elements $|\Lambda n\rangle$ of the carrier space V of $g \rightarrow D_{g}^{\wedge}$. Formula (3) shows that under the action $T_{n}^{\Lambda} \rightarrow T_{g} T_{n}^{\Lambda} T_{g}^{-1}$, the tensor operator T^{A} transforms in exactly the same way as the basis elements $|\Lambda n\rangle$ do. Thus, the usual definition of a tensor operator is connected with a fixed basis of V.

Let us take another orthonormal basis of V :

$$
\begin{equation*}
|\Lambda m\rangle^{\prime}=\sum_{n} u_{n m}|\Lambda n\rangle . \tag{4}
\end{equation*}
$$

The numbers $u_{n m}$ constitute a unitary matrix. We can obtain the operators

$$
\begin{equation*}
\tilde{T}_{m}^{\Lambda}=\sum_{n} u_{n m} T_{n}^{\Lambda} \tag{5}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T_{g} \tilde{T}_{m}^{\Lambda} T_{g}^{-1}=\sum_{n} u_{n m} T_{g} T_{n}^{\wedge} T_{g}^{-1} \tag{6}
\end{equation*}
$$

Matrix elements $D_{m^{\prime} m}^{\wedge}(g)$ for the basis $\langle\Lambda m\rangle^{\prime}$ are connected with matrix elements (2) by

$$
D_{m^{\prime} m}^{\wedge}(g)=\sum_{n n^{\prime}} u_{n m} \overline{u_{n^{\prime} m}^{\prime}} D_{n^{\prime} n}^{\wedge}(g) .
$$

Therefore,

$$
\begin{align*}
\sum_{m^{\prime}} D_{m^{\prime} m}^{\Lambda}(g) \tilde{T}_{m^{\prime}}^{\Lambda} & =\sum_{n n^{\prime}} \sum_{n^{\prime \prime} m^{\prime}} u_{n m} \widetilde{u_{n^{\prime} m}^{\prime}} D_{n^{\prime} n}^{\Lambda}(g) u_{n^{\prime \prime} m^{\prime}} T_{n^{\prime \prime}}^{\Lambda} \\
& =\sum_{n n^{\prime}} u_{n m} D_{n^{\prime} n}^{\Lambda}(g) T_{n^{\prime}}^{\Lambda} . \tag{7}
\end{align*}
$$

Due to (3) the right-hand sides of (6) and (7) are equal. Hence

$$
\begin{equation*}
T_{g} \tilde{T}_{m}^{\wedge} T_{g}^{-1}=\sum_{m^{\prime}} D_{m^{\prime} m}^{\wedge}(g) \tilde{T}_{m^{\prime}}^{\wedge} \tag{8}
\end{equation*}
$$

Thus, a set of operators (5) is a tensor operator $\tilde{\boldsymbol{T}}^{\Lambda}$ transforming under the representation $g \rightarrow D_{g}$ of G.

Let us show that the tensor operators \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\Lambda}$ have the same reduced matrix elements. Let $|j s i\rangle, i=1,2, \ldots, \operatorname{dim} H_{j}$, be an orthonormal basis of H_{j}^{s}. Then due to the Wigner-Eckart theorem (Barut and Raczka 1977, Butler 1975) matrix elements of the operators T_{n}^{A} can be represented as

$$
\begin{equation*}
\langle j s i| T_{n}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle=\sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\Lambda}\right\| j^{\prime} s^{\prime}\right\rangle^{r}\left\langle j i \mid \Lambda n, j^{\prime} i^{\prime}\right\rangle^{r} \tag{9}
\end{equation*}
$$

where $\langle\ldots \mid \ldots, \ldots .\rangle^{r}$ are Clebsch-Gordan coefficients of G. Here r separates multiple irreducible representations $g \rightarrow T_{g}^{j}$ in the tensor product of the representations $g \rightarrow D_{g}^{\Lambda}$ and $g \rightarrow T_{g}^{j^{\prime}}$. We have

$$
\begin{aligned}
\langle j s i| \tilde{T}_{m}^{A}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle & =\sum_{n} u_{n m}\langle j s i| T_{n}^{\wedge}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle \\
& =\sum_{r}\left\langle j s\left\|T^{\wedge}\right\| j^{\prime} s^{\prime}\right\rangle^{r} \sum_{n} u_{n m}\left\langle j i \mid \Lambda n, j^{\prime} i^{\prime}\right\rangle^{r} \\
& =\sum_{r}\left\langle j s\left\|T^{\wedge}\right\| j^{\prime} s^{\prime}\right\rangle^{r}\left\langle j i \mid \Lambda m, j^{\prime} i^{\prime}\right\rangle^{r}
\end{aligned}
$$

where the last Clebsch-Gordan coefficient corresponds to the basis $|\Lambda m\rangle^{\prime}$. Therefore, \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\Lambda}$ have the same reduced matrix elements.

From the point of view of the usual definition of a tensor operator, \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\Lambda}$ are different tensor operators. However, it is more natural to consider them as the same tensor operator, corresponding to different bases of the space V. Moreover, continuing this analogy we can consider the correspondence between vectors

$$
\begin{equation*}
v=\sum_{n} a_{n}|\Lambda n\rangle \in V \tag{10}
\end{equation*}
$$

and operators

$$
\begin{equation*}
T_{v}^{\Lambda}=\sum_{n} a_{n} T_{n}^{\wedge} \tag{11}
\end{equation*}
$$

A set of operators T_{v}^{\wedge} constitutes a linear space (we denote it by \mathscr{V}). The correspondence $v \rightarrow T_{v}^{A}$ realises the isomorphism ϕ between V and \mathscr{V}. The mapping $T_{v}^{\Lambda} \rightarrow$ $T_{\mathrm{g}} T_{v}^{\prime} T_{\mathrm{g}}^{-1}$ is a linear transformation $\mathscr{D}_{\mathrm{g}}^{\prime}$ of \mathscr{V}. The correspondence $\mathrm{g} \rightarrow \mathscr{D}_{\mathrm{g}}^{\prime}$ is a representation of G in \mathscr{V}. The isomorphism ϕ realises equivalence of the representations $g \rightarrow D_{\mathrm{g}}^{\Lambda}$ and $g \rightarrow \mathscr{D}_{\mathrm{g}}^{\wedge}, \mathscr{D}_{\mathrm{g}}^{\wedge}=\phi D_{\mathrm{g}}^{\wedge} \phi^{-1}$.

Now we can give the following definition of a tensor operator. The linear space \mathscr{V} of operators (acting in the Hilbert space H) for which the mapping $T^{\Lambda} \rightarrow T_{g} T^{\Lambda} T_{g}^{-1}$, $T^{\Lambda} \in \mathscr{V}$, is the representation $g \rightarrow \mathscr{D}_{\mathrm{g}}^{\wedge}$ of G in \mathscr{V} is called a tensor operator transforming under the representation $g \rightarrow \mathscr{D}_{\mathrm{g}}^{\Lambda}$ of G. It follows from formulae (9)-(11) that

$$
\begin{equation*}
\langle j s i| T_{v}^{\wedge}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle=\sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\wedge}\right\| j^{\prime} s^{\prime}\right\rangle^{r}\left\langle j i \mid v, j^{\prime} i^{\prime}\right\rangle^{\prime} \tag{12}
\end{equation*}
$$

where the reduced matrix elements $\left\langle j s\left\|\boldsymbol{T}^{A}\right\| j^{\prime} s^{\prime}\right\rangle^{r}$ coincide with those of relation (9). Formula (12) is the Wigner-Eckart theorem for a tensor operator of new definition ('linear space' tensor operator).

It is clear that a 'linear space' tensor operator does not depend on a choice of basis $|\Lambda n\rangle$ of the space. Choosing the basis $|\Lambda n\rangle$ in V and taking the operators $T_{n}^{\Lambda} \equiv \phi|\Lambda n\rangle \in \mathscr{V}$ we obtain the tensor operator in the usual sense.

We can further generalise the definition of a tensor operator. Let \mathscr{V} be a linear space of operators acting in the Hilbert space H, and $g \rightarrow T_{g}$ be a unitary representation of the group G, acting in H. Then \mathscr{V} is called a tensor operator if for every $T \in \mathscr{V}$ we have $T_{g} T T_{\mathrm{g}}^{-1} \in \mathscr{V}$.

The condition $T_{g} T T_{g}^{-1} \in \mathscr{V}, T \in \mathscr{V}$, means that the mapping $T \rightarrow T_{g} T T_{g}^{-1}, T \in \mathscr{V}$, is a representation of G in \mathscr{V}. Our tensor operator transforms under this representation.

It is clear that the condition $T_{g} T T_{g}^{-1} \in \mathscr{V}, T \in \mathscr{V}$, is very simple. Here we do not need to know the matrix elements $D_{n^{\prime}}^{\Lambda^{\prime}}(g)$ of the representatation of G. Moreover, our last definition gives a simple method of construction of tensor operators. Indeed, if we have the representation $g \rightarrow T_{\mathrm{g}}$ of G in the Hilbert space H and the operator A in H, then taking the linear span \mathscr{V} of the operators $T_{g} A T_{g}^{-1}, g \in G$, we obtain a tensor operator: $T_{g} \mathscr{V} T_{g}^{-1} \in \mathscr{V}$.

3. Wigner-Eckart theorem for different bases

The Wigner-Eckart theorem is proved for fixed bases $|j s i\rangle$ of the subspaces H_{i}^{s} of H. Reduced matrix elements in (9) are defined by

$$
\begin{equation*}
\left\langle j s\left\|\boldsymbol{T}^{\wedge}\right\| j^{\prime} s^{\prime}\right\rangle^{r}=d^{-1} \sum_{i i^{\prime} n}\langle j s i| T_{n}^{\wedge}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle\left\langle\Lambda n, j^{\prime} i^{\prime} \mid j i\right\rangle^{r} \tag{13}
\end{equation*}
$$

where d is the dimensionality of $g \rightarrow T_{g}^{j}$. Reduced matrix elements do not depend on i, i^{\prime}, and n, but their definition by formula (13) depends on the choice of bases $|j s i\rangle$ of H_{i}^{s}. Let us show that in reality reduced matrix elements do not depend on this choice. In other words, if $|j s t\rangle^{\prime}$ are new bases of spaces H_{i}^{s} then

$$
\begin{equation*}
\langle j s t| T_{n}^{A}\left|j^{\prime} s^{\prime} t^{\prime}\right\rangle=\sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\Lambda}\right\| j^{\prime} s^{\prime}\right\rangle^{r}\left\langle j t \mid \Lambda n, j^{\prime} t^{\prime}\right\rangle^{\prime} \tag{14}
\end{equation*}
$$

where the reduced matrix elements coincide with those of formula (9). Let

$$
\begin{equation*}
|j s t\rangle^{\prime}=\sum_{i} a_{i t}^{i}|j s i\rangle . \tag{15}
\end{equation*}
$$

The numbers $a_{i t}^{j}$ (at fixed j) constitute a unitary matrix. It follows from (9) and (15) that

$$
\begin{aligned}
\langle j s t| T_{n}^{\prime}\left|j^{\prime} s^{\prime} t^{\prime}\right\rangle & =\sum_{i i^{\prime}} \overline{a_{i t}^{j}} a_{i^{\prime} t^{\prime}}\langle j s i| T_{n}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle \\
& =\sum_{i i^{\prime}} \overline{a_{i i}^{j}} a_{i^{\prime} t^{\prime}}^{i^{\prime}} \sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\wedge}\right\| j^{\prime} s^{\prime}\right\rangle^{\prime}\left\langle j i \mid \Lambda n, j^{\prime} i^{\prime}\right\rangle^{r} \\
& =\sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\Lambda}\right\| j^{\prime} s^{\prime}\right\rangle^{\prime} \sum_{i i^{\prime}} \overline{a_{i t}^{i}} a_{i^{\prime} t^{\prime} t^{\prime}}\left\langle j i \mid \Lambda n, j^{\prime} i^{\prime}\right\rangle^{r} \\
& =\sum_{r}\left\langle j s\left\|\boldsymbol{T}^{\Lambda}\right\| j^{\prime} s^{\prime}\right\rangle^{\prime}\left\langle j t \mid \Lambda n, j^{\prime} t^{\prime}\right\rangle^{r} .
\end{aligned}
$$

Therefore, the reduced matrix elements in (9) and (14) coincide. It is clear that this assertion is valid if we take the operators $T_{v}^{\wedge}, v \in V$, instead of the operators T_{n}^{A}, $n=1,2, \ldots, \operatorname{dim} D^{\Lambda}$.

4. Irreducibility and equivalence of tensor operators

Usually irreducibility of the tensor operator $\boldsymbol{T}^{\wedge} \equiv\left\{T_{n}^{\wedge}, n=1,2, \ldots\right\}$ is defined as irreducibility of the representation $g \rightarrow D_{g}^{\wedge}$ of G. However, it is possible to give another definition of irreducibility, which is useful for applications.

The tensor operator $\boldsymbol{T}^{\Lambda}=\left\{T_{v}^{\Lambda}, v \in V\right\}$ is called irreducible, if a set of operators T_{g}, $g \in G$, and $T_{i}^{\prime}, v \in V$, is irreducible, i.e. if every bounded operator A, commuting with all operators T_{g} and T_{v}^{\wedge}, is a multiple of the unit operator.

The tensor operators $\boldsymbol{T}^{\Lambda}=\left\{T_{v}^{\Lambda}, v \in V\right\}$ and $\tilde{\boldsymbol{T}}^{\Lambda}=\left\{\tilde{T}_{v}^{A}, v \in V\right\}$ transforming under the same representation $g \rightarrow D_{\mathrm{g}}^{\wedge}$ of G are called equivalent (or unitary equivalent) if there exists an invertible bounded (respectively unitary) operator U, transforming H into \tilde{H}, for which

$$
\begin{equation*}
U T_{8} U^{-1}=\tilde{T}_{8}, \quad g \in G, \quad U T_{v}^{\lambda} U^{-1}=\tilde{T}_{v}^{\lambda}, \quad v \in V \tag{16}
\end{equation*}
$$

Here $g \rightarrow T_{g}$ and $g \rightarrow \tilde{T}_{g}$ are representations of G which realise the symmetry of \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\wedge}$, correspondingly. Let us note that here we do not suppose that the representations $g \rightarrow T_{g}$ and $g \rightarrow \tilde{T}_{g}$ are unitary.

We shall give necessary and sufficient conditions of irreducibility and equivalence of tensor operators. For their formulation we need some facts on the space H. This space is represented by formula (1). Let us represent the subspace $m_{j} H_{j}$ in the form $m_{j} H_{j}=V_{j} \otimes H_{j}$. In order to define the space V_{j} we consider the basis $|j s i\rangle, i=1,2, \ldots$, $\operatorname{dim} H_{j}, s=1,2, \ldots, m_{i}$, of $m_{j} H_{j}$. We express these basis elements as $|j s\rangle \otimes|j i\rangle=|j s\rangle|j i\rangle$, where $|j s\rangle$ are formal vectors, which define the orthonormal basis of the space V_{j}. The correspondence

$$
\begin{equation*}
|j s i\rangle \leftrightarrow|j s\rangle|j i\rangle \tag{17}
\end{equation*}
$$

realises an isomorphism of $m_{j} H_{j}$ and $V_{i} \otimes H_{j}$. In the following we identify these two spaces. It is clear that the operators $T_{g}, g \in G$, acting on $|j s\rangle|j i\rangle$, leave the vector $|j s\rangle$ invariant. The space H can be represented as

$$
\begin{equation*}
H=\sum_{j}\left(V_{j} \otimes H_{j}\right) . \tag{18}
\end{equation*}
$$

Using relation (12) we can write

$$
\begin{align*}
T_{v}^{\Lambda}\left|j_{2} s_{2} i_{2}\right\rangle & =\sum_{j_{1} s_{1} i_{1}}\left\langle j_{1} s_{1} i_{1}\right| T_{v}^{\Lambda}\left|j_{2} s_{2} i_{2}\right\rangle\left|j_{1} s_{1} i_{1}\right\rangle \\
& =\sum_{j_{1} s_{1} i_{1} r}\left\langle j_{1} s_{1}\left\|\boldsymbol{T}^{\Lambda}\right\| j_{2} s_{2}\right\rangle^{\prime}\left\langle j_{1} i_{1} \mid v, j_{2} i_{2}\right\rangle^{\prime}\left|j_{1} s_{1} i_{1}\right\rangle . \tag{19}
\end{align*}
$$

This formula and identification (17) allow us to introduce new operators which act on the spaces V_{i} and H_{j}. Namely, for each j_{1}, j_{2} and r we introduce the operator $A\left(j_{2} j_{1} r\right)$ which transforms $V_{j_{2}}$ into $V_{i_{1}}$:

$$
\begin{equation*}
A\left(j_{2} j_{1} r\right)\left|j_{2} s_{2}\right\rangle=\sum_{s_{1}}\left\langle j_{1} s_{1}\left\|\boldsymbol{T}^{\Lambda}\right\| j_{2} s_{2}\right\rangle^{r}\left|j_{1} s_{1}\right\rangle \tag{20}
\end{equation*}
$$

Thus, reduced matrix elements of the tensor operator T^{\wedge} are matrix elements of $A\left(j_{2} j_{1} r\right)$. For each j_{1}, j_{2} and r we also introduce the operator $W_{v}\left(j_{2} j_{1} r\right)$ which transforms $H_{i_{2}}$ into $H_{j_{1}}$:

$$
\begin{equation*}
W\left(j_{2} j_{1} r\right)\left|j_{2} i_{2}\right\rangle=\sum_{i_{1}}\left\langle j_{1} i_{1} \mid v, j_{2} i_{2}\right\rangle^{\prime}\left|j_{1} i_{1}\right\rangle . \tag{21}
\end{equation*}
$$

It follows from (17) and (19)-(21) that

$$
\begin{equation*}
T_{v}^{A}\left|j_{2} s_{2}\right\rangle\left|j_{2} i_{2}\right\rangle=\sum_{i_{1} r}\left\{\boldsymbol{A}\left(j_{2} j_{1} r\right) \otimes W_{v}\left(j_{2} j_{1} r\right)\right\}\left|j_{2} s_{2}\right\rangle\left|j_{2} i_{2}\right\rangle \tag{22}
\end{equation*}
$$

It is clear that there is a finite number of summands in (22). They are defined by formula (21).

Theorem. Let tensor operators $\boldsymbol{T}^{\Lambda}=\left\{T_{v}^{\Lambda}, v \in V\right\}$ and $\tilde{\boldsymbol{T}}^{\Lambda}=\left\{\tilde{T}_{v}^{\Lambda}, v \in V\right\}$ transform under the same representation $g \rightarrow D_{g}^{\wedge}$ of G and act in the Hilbert spaces H and \tilde{H}, correspondingly. Let the representations $g \rightarrow T_{g}$ and $g \rightarrow \tilde{T}_{g}$ realise the symmetry of these tensor operators. Then \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\Lambda}$ are equivalent if and only if (a) the representations $g \rightarrow T_{g}$ and $g \rightarrow \tilde{\boldsymbol{T}}_{g}$ are equivalent; (b) there exists a uniformly bounded (in j) set of invertible operators U_{j}, associated with the summands in (19) and transforming V_{j} onto \tilde{V}_{j}, such that for every r

$$
\begin{equation*}
U_{j_{1}} A\left(j_{2} j_{1} r\right) U_{i_{2}}^{-1}=A\left(j_{2} j_{1} r\right) \tag{23}
\end{equation*}
$$

(c) the operator U, which realises equivalence of the representations $g \rightarrow T_{\mathrm{g}}$ and $g \rightarrow \tilde{T}_{g}$, has the form

$$
\begin{equation*}
U=\sum_{i} \oplus\left(U_{j} \otimes E_{j}\right), \tag{24}
\end{equation*}
$$

where E_{j} is the unit operator in $H_{j} \equiv \tilde{H}_{j}$. For unitary equivalence of the tensor operators \boldsymbol{T}^{Λ} and $\tilde{\boldsymbol{T}}^{\Lambda}$ the representations $g \rightarrow T_{\mathrm{g}}$ and $g \rightarrow \tilde{T}_{\mathrm{g}}$ have to be unitary equivalent, and the operators U_{j} have to be unitary.

Let us note that the formulation of the theorem assumes that the space \dot{H} is represented as

$$
\begin{equation*}
\tilde{H}=\sum_{j} \oplus m_{j} H_{j}=\sum_{j} \oplus\left(\tilde{V}_{j} \otimes H_{j}\right) \tag{25}
\end{equation*}
$$

Uniform boundedness (in j) of the operators U_{i} means that $\sup _{j}\left\|U_{j}\right\|<a<\infty$, where a is a constant.

We shall prove the theorem for the case of equivalent tensor operators. The proof for unitary equivalence is the same. Let the tensor operators T^{Λ} and \dot{T}^{Λ} be equivalent. Then there is an invertible bounded operator U for which the relations (16) are valid. From the first relation of (16) it follows that the representations $g \rightarrow T_{\mathrm{g}}$ and $g \rightarrow \tilde{T}_{\mathrm{g}}$ are equivalent. Then from the Schur lemma it follows that $U=\Sigma_{j} \oplus U_{j}^{\prime}$, where $\left\{U_{j}^{\prime}\right\}$ is a set of invertible uniformly bounded (in j) operators, transforming the space $m_{j} H_{i} \subset H$ onto the space $m_{j} H_{j} \subset \tilde{H}$. Since the operators T_{g} and \tilde{T}_{g} act upon basis elements of the spaces $m_{j} H_{j}=V_{i} \otimes H_{j}$ and $m_{j} H_{j}=\tilde{V}_{j} \otimes H_{j}$ by the same formulae, then due to the Schur lemma we have $U_{i}^{\prime}=U_{j} \otimes E_{j}$, where U_{i} is an operator from V_{i} to \bar{V}_{j}. Therefore, the relation (24) is proved. Since $\left\|U_{j}^{\prime}\right\|=\left\|U_{j}\right\|$ then a set of the operators U_{j} is uniformly bounded in j. It is clear that the operators U_{j} are invertible. Substituting the expressions (22) for the operators T_{v}^{Λ} and \tilde{T}_{v}^{Λ} and the expression (24) for the operator U into the second relation of (16) we obtain relation (23). Thus, necessity is proved. Sufficiency is proved in the same way by reversing the order of the reasoning. The theorem is proved.

Theorem. The tensor operator $T^{\Lambda}=\left\{T_{v}^{\Lambda}, v \in V\right\}$ is irreducible if and only if for every uniformly bounded (in j) set of operators C_{j} acting in the spaces V_{j}, fulfilment of the relations

$$
\begin{equation*}
C_{i_{1}} A\left(j_{2} j_{1} r\right)=A\left(j_{2} j_{1} r\right) C_{j_{2}} \tag{26}
\end{equation*}
$$

implies the equalities $C_{j}=a E_{j}$, where E_{j} is the unit operator in V_{j} and a is a constant.
Proof of this theorem is similar to that of the previous theorem. Let $\boldsymbol{T}^{\Lambda}=$ $\left\{T_{v}^{A}, v \in V\right\}$ be an irreducible tensor operator. Let C_{j} be operators acting in different spaces V_{j} and satisfying the conditions of our theorem. Then we construct the operator $C=\Sigma_{j} \oplus\left(C_{j} \otimes E_{j}\right)$, acting in the space (18). Using the relations (22) and (26) it is easy to verify that C commutes with all operators $T_{v}^{A}, v \in V$, and $T_{g}, g \in G$. Since the tensor operator T^{\wedge} is irreducible then $C=a E$, where a is a constant and E is the unit operator in H. Therefore, $C_{i}=a E_{j}$. Thus, necessity is proved. Sufficiency is proved in the same way by reversing the order of the reasoning. The theorem is thus proved.

5. Wigner-Eckart theorem and infinitesimal operators for representations of compact groups in different bases

Here the Wigner-Eckart theorem will be used in infinitesimal form. Instead of the representations $g \rightarrow D_{\mathrm{g}}^{\Lambda}$ and $g \rightarrow T_{\mathrm{g}}$ of the group G we consider the representations $a \rightarrow D_{a}^{A}$ and $a \rightarrow T_{a}$ of the Lie algebra \mathscr{G} of G. Formula (3) in infinitesimal form can be written as

$$
\begin{equation*}
\left[T_{a}, T_{n}^{\Lambda}\right]=\sum_{n} D_{n^{\prime} n}^{\Lambda}(a) T_{n^{\prime}}^{\Lambda} \tag{27}
\end{equation*}
$$

Since $[\mathscr{G}, \mathscr{G}] \subset \mathscr{G}$, then the representation of \mathscr{G} in the space \mathscr{G} (adjoint representation) is defined. According to this representation the operator ad a,

$$
\begin{equation*}
(\operatorname{ad} a) x=[a, x] \in \mathscr{G}, \tag{28}
\end{equation*}
$$

corresponds to the element a of \mathscr{G}. It is known that a scalar product can be introduced in \mathscr{G} by means of the Cartan-Killing bilinear form. Let us choose an orthonormal
basis $b_{1}, b_{2}, \ldots, b_{n}$ in \mathscr{G}. Let $D_{i i^{\prime}}^{\text {ad }}(a)$ be matrix elements of the adjoint representation of \mathscr{G} with respect to this basis. These matrix elements coincide with the structure constants of \mathscr{G}. Relation (28) for basis elements $x=b_{i}$ can be written as

$$
\begin{equation*}
(\mathrm{ad} a) b_{i} \equiv\left[a, b_{i}\right]=\sum_{i^{\prime}} D_{i^{\prime} i}^{\mathrm{ad}}(a) b_{i^{\prime}} . \tag{29}
\end{equation*}
$$

Now we consider the finite-dimensional irreducible representation $a \rightarrow T_{a}^{\lambda}$ of \mathscr{G}. According to (29)

$$
\begin{equation*}
\left[T_{a}^{\lambda}, T_{i}^{\lambda}\right]=\sum_{i^{\prime}} D_{i^{\prime} i^{\prime}}^{\mathrm{ad}}(a) T_{i^{\prime}}^{\lambda} \tag{30}
\end{equation*}
$$

where $T_{i}^{\lambda}=T_{b_{i}}^{\lambda}$. Relation (27) shows that the operators $T_{i}^{\lambda}, i=1,2, \ldots, n$, constitute the tensor operator $\boldsymbol{T}^{\text {ad }}$, which transforms under the adjoint representation ad of \mathscr{G}. The representation $a \rightarrow T_{a}^{\lambda}$ of \mathscr{G} realises the symmetry of this tensor operator. Thus, the space H of relation (1) in this case consists of one subspace H_{j}.

Let $|\lambda m\rangle, m=1,2, \ldots, \operatorname{dim} T^{\lambda}$, be a basis of the carrier space H of $a \rightarrow T_{a}^{\lambda}$. According to the Wigner-Eckart theorem

$$
\begin{equation*}
\langle\lambda m| T_{i}^{\lambda}\left|\lambda m^{\prime}\right\rangle=\sum_{q}\left\langle\lambda\left\|\boldsymbol{T}^{\mathrm{ad}}\right\| \lambda\right\rangle^{q}\left\langle\lambda m \mid(\mathrm{ad}) i, \lambda m^{\prime}\right\rangle^{q} . \tag{31}
\end{equation*}
$$

As was shown in § 2 , the reduced matrix elements $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{a}$ are not dependent on the choice of orthonormal basis $|\lambda m\rangle$.

The formula (31) contains Clebsch-Gordan coefficients for the tensor product of the representations ad and $a \rightarrow T_{a}^{\lambda}$. Due to formula (11) of Klimyk (1968) this tensor product contains the representation $a \rightarrow T_{a}^{\lambda}$ with multiplicity $n_{\lambda} \leqslant r$, where r is the rank of \mathscr{G}. Moreover, there is an infinite number of representations $a \rightarrow T_{a}^{\lambda}$ for which $n_{\lambda}=r$. Therefore, we can formulate the following theorem.

Theorem. Every irreducible representation $a \rightarrow T_{a}^{\lambda}$ of \mathscr{G} is characterised by r numbers $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{q}, q=1,2, \ldots, r$. Some of them may be equal to zero. Infinitesimal operators T_{i}^{λ} of the representation $a \rightarrow T_{a}^{\lambda}$ in any orthonormal basis $|\lambda m\rangle$ are given by formula (31).

Thus, the numbers $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{q}$ are invariants of the representation $a \rightarrow T_{a}^{\lambda}$. Their quantity is equal to that of independent Casimir operators. However, in some cases the invariants $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{q}$ are more useful than eigenvalues of Casimir operators for the representation $a \rightarrow T_{a}^{\lambda}$. For example, the relations of Casimir operators with matrix elements of infinitesimal operators are very complicated. The invariants $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{q}$ are directly connected with these matrix elements.

Now the meaning of the invariants $\left\langle\lambda\left\|\boldsymbol{T}^{\text {ad }}\right\| \lambda\right\rangle^{a}$ in the representation theory is not clear. Properties of these invariants will be derived in a separate paper, where their explicit expressions will be given for the groups $\mathrm{U}(n)$ and $\mathrm{SO}(n)$.

6. Infinitesimal operators for representations of compact and non-compact Lie groups in different bases

Now we consider infinitesimal operators from another point of view. Let G be a semisimple real non-compact Lie group and K its maximal compact subgroup. Let G be a complexification of G, and G_{k} its real compact form. Then G_{k} is of the same
dimensionality as G. Moreover, $G_{k} \supset K$. Enumeration of the corresponding groups G and G_{k} can be found, for example, in Klimyk (1982) and Klimyk and Gruber (1979). Let \mathscr{G} and \mathscr{G}_{k} be Lie algebras of G and G_{k}, respectively. Let \mathscr{K} be a Lie algebra of K. Then we have (Helgason 1962)

$$
\begin{equation*}
\mathscr{G}=\mathscr{K}+\mathscr{P}, \quad \mathscr{G}_{k}=\mathscr{K}+\mathrm{i} \mathscr{P}, \quad \mathrm{i}=\sqrt{-1}, \tag{32}
\end{equation*}
$$

where sums are direct and \mathscr{P} is a linear subspace in \mathscr{G}. These decompositions have the property (Helgason 1962)

$$
\begin{equation*}
[\mathscr{K}, \mathscr{P}] \subset \mathscr{P}, \quad[\mathscr{K}, \mathrm{i} \mathscr{P}] \subset \mathrm{i} \mathscr{P} . \tag{33}
\end{equation*}
$$

Therefore, we have the representations of \mathscr{K} in \mathscr{P} and in $\mathfrak{P P}$. Let $p_{s}, s=1,2, \ldots, k$, and $p_{s}^{\prime}, s=1,2, \ldots, k$, be bases in \mathscr{P} and $i \mathscr{P}$, respectively. We denote the representations of \mathscr{K} in \mathscr{P} and in iP by AD. (These representations are equivalent.) According to (33) we have

$$
\begin{array}{ll}
{\left[a, p_{s}\right]=\sum_{s^{\prime}} D_{s^{\prime} s}^{\mathrm{AD}}(a) p_{s^{\prime}},} & a \in \mathscr{K}, \\
{\left[a, p_{s}^{\prime}\right]=\sum_{s^{\prime}} D_{s^{\prime} s}^{\mathrm{AD}}(a) p_{s^{\prime}}^{\prime},} & a \in \mathscr{K} . \tag{35}
\end{array}
$$

Now we consider the representation $a \rightarrow T_{a}^{\lambda}$ of the algebra \mathscr{G}_{k}. Operators which correspond to $a \in \mathscr{K}, p_{s}$ and p_{s}^{\prime} will be denoted by A, P_{s} and P_{s}^{\prime}, respectively. It follows from (34) and (35) that

$$
\begin{array}{ll}
{\left[A, P_{s}\right]=\sum_{s^{\prime}} D_{s^{\prime} s}^{\mathrm{AD}}(a) P_{s^{\prime}},} & a \in \mathscr{K}, \\
{\left[A, P_{s}^{\prime}\right]=\sum_{s^{\prime}} D_{s^{\prime} s}^{\mathrm{AD}}(a) P_{s^{\prime}}^{\prime},} & a \in \mathscr{K} . \tag{37}
\end{array}
$$

Therefore, $\boldsymbol{P}=\left\{P_{s}, s=1,2, \ldots, k\right\}$ and $\boldsymbol{P}^{\prime}=\left\{P_{s}^{\prime}, s=1,2, \ldots, k\right\}$ are tensor operators which transform under the representation AD of \mathscr{K}. The reduction of the representation $a \rightarrow T_{a}^{\lambda}$ onto \mathscr{K} realises the symmetry of these tensor operators. Let $H=\Sigma_{i} \oplus m_{j} H_{i}$ be a decomposition of H into invariant irreducible (with respect to \mathscr{K}) subspaces. Different subspaces H_{j} with the same j will be denoted by $H_{j}^{\mathrm{s}}, s=1,2, \ldots, m_{j}$. Orthonormal basis elements of H_{j}^{s} will be denoted by $|j s i\rangle$. According to the Wigner-Eckart theorem we have

$$
\begin{align*}
& \langle j s i| P_{s}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle=\sum_{a}\left\langle j s\|\boldsymbol{P}\| j^{\prime} s^{\prime}\right\rangle^{q}\left\langle j i \mid(\mathrm{AD}) s, j^{\prime} i^{\prime}\right\rangle^{q} \tag{38}\\
& \langle j s i| P_{s}^{\prime}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle=\sum_{q}\left\langle j s\left\|\boldsymbol{P}^{\prime}\right\| j^{\prime} s^{\prime}\right\rangle^{q}\left\langle j i \mid(\mathrm{AD}) s, j^{\prime} i^{\prime}\right\rangle^{q} . \tag{39}
\end{align*}
$$

We consider that the representation operators for the subalgebra \mathscr{K} are known. Therefore, we have to find them for \mathscr{P} and $i \mathscr{P}$ (cf formula (32)). In other words, we have to find the operators P_{s} and P_{s}^{\prime}. They are defined by relations (38) and (39). To have them in an explicit form we have to find reduced matrix elements of (38) and (39). If infinitesimal operators P_{s} and P_{s}^{\prime} are known for one choice of basis $|j s i\rangle$ then relations (38) and (39) define reduced matrix elements:

$$
\begin{aligned}
& \left\langle j s\|\boldsymbol{P}\| j^{\prime} s^{\prime}\right\rangle^{q}=\sum_{s i^{\prime}}\langle j s i| P_{s}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle\left\langle(\mathrm{AD}) s, j^{\prime} i^{\prime} \mid j i\right\rangle^{q} \\
& \left\langle j s\left\|\boldsymbol{P}^{\prime}\right\| j^{\prime} s^{\prime}\right\rangle^{q}=\sum_{s i^{\prime}}\langle j s i| P_{s}^{\prime}\left|j^{\prime} s^{\prime} i^{\prime}\right\rangle\left\langle(\mathrm{AD}) s, j^{\prime} i^{\prime} \mid j i\right\rangle^{q} .
\end{aligned}
$$

These reduced matrix elements can be used for obtaining the infinitesimal operators P_{s} and P_{s}^{\prime} in any basis $|j s i\rangle^{\prime}$. They can be obtained by means of Clebsch-Gordan coefficients for the basis $|j s i\rangle^{\prime}$.

Thus, evaluation of an explicit form of infinitesimal operators P_{s} and P_{s}^{\prime} in different bases is reduced to the evaluation of Clebsch-Gordan coefficients for different bases. There are many methods for the evaluation of Clebsch-Gordan coefficients. We mention here the recursive formula (47) of Klimyk (1982). The results of Klimyk (1979), Klimyk and Gruber (1979) and Gruber and Klimyk (1981) can be used for evaluation of partial Clebsch-Gordan coefficients.

7. Conclusion

We have generalised the notion of a tensor operator transforming under a representation of a compact group. This tensor operator is a linear space \mathscr{V} of operators. The usual tensor operator can be obtained by any choice of a basis in V.

We apply the Wigner-Eckart theorem to evaluate matrix elements of infinitesimal operators. This evaluation demands Clebsch-Gordan coefficients of partial type. Therefore, the problem is to evaluate these Clebsch-Gordan coefficients in different bases. Considering infinitesimal operators of representations of compact and noncompact groups, we see (cf formulae (38) and (39)) that they are of the same form.

We have obtained new invariants of irreducible representations of compact Lie groups. It is interesting to clarify their meaning in representation theory and for applications of group representations. Let us note that these invariants can be generalised to representations of non-compact semisimple Lie groups. The application of the Wigner-Eckart theorem for non-compact groups (Klimyk 1975) is needed.

References

Barut A O and Raczka R 1977 The Theory of Group Representations and Applications (Warsaw: PWN) ch 9
Butler P H 1975 Phil. Trans. R. Soc. A 277 545-85
Gruber B and Klimyk A U 1981 J. Math. Phys. 22 2762-9
Helgason S 1962 Differential Geometry and Symmetric Spaces (New York: Academic) ch 3
Klimyk A U 1968 Am. Math. Soc. Transl. Serie 2. 76 63-73

- 1975 Rep. Math. Phys. 7 153-66
- 1979 Matrix Elements and Clebsch-Gordan Coefficients of Group Representations (in Russian) (Kiev: Naukova Dumka) ch 6, 8
- 1982 J. Phys. A: Math. Gen. 15 3009-23

Klimyk A U and Gruber B 1979 J. Math. Phys. 20 2011-3

